The transformation of organoboron compounds plays an important role in synthetic chemistry, and recent advancements in boron-migration reactions have garnered considerable attention. Here, we report an unprecedented 1,2-boron migrative acylation upon photocatalysis-facilitated
N
-heterocyclic carbene catalysis. The design of a redox-active boronic ester substrate, serving as an excellent β-boron radical precursor, is the linchpin to the success of this chemistry. With the established protocol, a wide spectrum of β-boryl ketones has been rapidly synthesized, which could further undergo various C─B bond transformations to give multifunctionalized products. The robustness of this catalytic strategy is underscored by its successful application in late-stage modification of drug-derived molecules and natural products. Preliminary mechanistic investigations, including several control experiments, photochemistry measurements, and computational studies, shed light on the catalytic radical reaction mechanism.