2019
DOI: 10.1088/2040-8986/ab42b5
|View full text |Cite
|
Sign up to set email alerts
|

Three different types of astigmatic Hermite-Gaussian beams with orbital angular momentum

Abstract: In this work, we study three different types of astigmatic (anisotropic) Hermite-Gaussian (aHG) beams whose complex amplitude in the Fresnel diffraction zone is described by the complex argument of a Hermite polynomial of degree (n, 0). The first-type beam is a circularly symmetric optical vortex with topological charge n that has passed through a cylindrical lens. The outgoing optical vortex ‘splits’ into n first-order optical vortices, carrying an orbital angular momentum (OAM) per photon of n. The second-ty… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1
1

Citation Types

0
7
0
2

Year Published

2021
2021
2022
2022

Publication Types

Select...
7

Relationship

1
6

Authors

Journals

citations
Cited by 18 publications
(9 citation statements)
references
References 47 publications
0
7
0
2
Order By: Relevance
“…It can be seen from the intensity distribution in the focal plane after the astigmatic transformation of the vortex Laguerre–Gaussian modes with a TC value l into the Hermite–Gaussian modes with orders ( p , l ) = (0, l ) [ 67 , 68 , 69 ] that the TC of the vortex beam was visualized in the intensity of the astigmatically transformed beam.…”
Section: Discussionmentioning
confidence: 99%
“…It can be seen from the intensity distribution in the focal plane after the astigmatic transformation of the vortex Laguerre–Gaussian modes with a TC value l into the Hermite–Gaussian modes with orders ( p , l ) = (0, l ) [ 67 , 68 , 69 ] that the TC of the vortex beam was visualized in the intensity of the astigmatically transformed beam.…”
Section: Discussionmentioning
confidence: 99%
“…Roots of the Hermite polynomial have symmetric pairs relative to the origin, with the Hermite polynomial roots H n alternating with the roots H n+1 . Hence, considering that n < ν < (n + 1), the roots (10) need to be located between the maximum-number zeros of the Hermite polynomial, H n and H n+1 . At large-order fractional edge dislocation, ν ≫ 1, the Tricomi function in ( 5) is described by a different asymptotic relation on the horizontal axis [27]:…”
Section: Kummer's and Tricomi Function Zerosmentioning
confidence: 99%
“…Also, focusing of a high-order optical vortex (OV) with an astigmatic lens [5,6], conversion of an astigmatic sin-Gaussian beam in a nonlinear medium [7], and an astigmatic mode conversion in a laser cavity [8,9] have been reported. Elliptic optical Gaussian beams with astigmatic phase were investigated in [10,11], at first with the conversion of an HG beam (0, n) by means of a tilted cylindrical lens and later by studying a mode beam in which a conventional OV with the charge n. In the last case, the charge embedded into an elliptic astigmatic Gaussian beam remains unchanged upon propagation, not splitting into a bunch of simple OVs. Other topics relating to the astigmatic transform are the propagation of elliptic OVs [12], the use of an astigmatic transform for measuring the topological charge (TC) of a single OV [13], and analyzing an astigmatic vortical HG beam [14].…”
Section: Introductionmentioning
confidence: 99%
“…В [8,9] исследовалось астигматическое модовое преобразование внутри лазерного резонатора. Оптические эллиптические Гауссовы вихри с астигматической фазой рассматривались ранее в [10,11]. В [10] рассматривалось преобразование пучка Эрмита-Гаусса порядка (0, n) с помощью повернутой цилиндрической линзы.…”
Section: Introductionunclassified
“…Оптические эллиптические Гауссовы вихри с астигматической фазой рассматривались ранее в [10,11]. В [10] рассматривалось преобразование пучка Эрмита-Гаусса порядка (0, n) с помощью повернутой цилиндрической линзы. В [11] рассмотрен модовый пучок, у которого канонический оптический вихрь с топологическим зарядом (ТЗ), равным n, внедренный в эллиптический астигматический Гауссов пучок, сохраняется при распространении и не расщепляется на простые оптические вихри.…”
Section: Introductionunclassified