Counter electrode (CE), as one of the key components of dye-sensitized solar cells (DSSCs), plays a significant role in the overall efficiency and cost of the device. Platinum metal has long been considered one of the most efficient CEs for DSSCs, but its scarcity, high cost, and low stability in I − /I 3 − redox couple limit its application in the large scale. In this chapter, we provide a broad overview on porous carbon materials as supreme metalfree counter electrode for DSSCs. In the first part, we concisely discuss on the importance and working principle of DSSCs and then the influence of counter electrode on the photovoltaic performance of DSSCs. Afterward, we review different synthetic methods and precursors of porous carbon materials and their efficiency in DSSCs. In the last section, we discuss in detail with example how to characterize and evaluate the device performance using porous carbon materials as counter electrode. Finally, we finish this chapter with a brief summary and outlook of porous carbon materials as counter electrodes in DSSCs.