To study the structural basis of pathological remodelling and altered calcium channel functional states in the heart, we sought to re-purpose high-affinity ligands of the cardiac calcium channel, the ryanodine receptor (RyR2), into super-resolution imaging probes. Imperacalcin (IpCa), a scorpion toxin peptide which induces channel sub-conduction states, and DPc10, a synthetic peptide corresponding to a sequence of the RyR2, which replicates arrhythmogenic CPVT functional changes, were used in fluorescent imaging experiments. Isolated adult rat ventricular cardiomyocytes were saponin-permeabilised and incubated with each peptide. IpCa-A546 became sequestered into the mitochondria. This was prevented by treatment of the permeabilised cells with the ionophore FCCP, revealing a striated staining pattern in confocal imaging which had weak colocalisation with RyR2 clusters. Poor specificity (as an RyR2 imaging probe) was confirmed at higher resolution with expansion microscopy (proExM) (~70 nm). DPc10-FITC labelled a striated pattern, which had moderate colocalisation with RyR2 cluster labelling in confocal and proExM. There was also widespread non-target labelling of the Z-discs, intercalated discs, and nuclei, which was unaffected by incubation times or 10 mM caffeine. The inactive peptide mut-DPc10-FITC (which causes no functional effects) displayed a similar labelling pattern. Significant labelling of structures unrelated to RyR2 by both peptide conjugates makes their use as highly specific imaging probes of RyR2 in living isolated cardiomyocytes highly challenging. We investigated the native DPc10 sequence within the RyR2 structure to understand the domain interactions and proposed mechanism of peptide binding. The native DPc10 sequence does not directly interact with another domain, and but is downstream of one such domain interface. The rabbit Arg2475 (equivalent to human Arg2474, mutated in CPVT) in the native sequence is the most accessible portion and most likely location for peptide disturbance, suggesting FITC placement does not impact peptide binding.