Three-dimensional fast spin-echo (3DFSE) techniques are promising for black-blood imaging of cerebral vessels. In this study, flow-related signal dephasing was demonstrated as the primary mechanism for blood signal attenuation. Parameter optimization of TR (1500 to 3000 ms), receiver bandwidth (25 to 31.25 kHz), effective TE (25.7 to 30.1 ms), and ETL (7 to 8) was accomplished by making measurements of vessel-to-tissue contrast-to-noise ratios on vessels. A comparison of high-resolution 3DFSE and 3DTOF magnetic resonance angiography demonstrated that 3DFSE can generate images with equivalent or better small vessel detail than conventional techniques. 3DFSE black-blood techniques may provide improved sensitivity of small arteries and veins with slow or in-plane flow and immunity to flow-related distortions. Future studies with optimized parameters will determine the clinical efficacy of this technique.