Background: Mechanical stimulation and platelet-rich plasma (PRP) have been shown to be beneficial for healing of the bone-tendon interface (BTI), but few studies have explored the efficacy of a combination of these applications. We investigated the effect of mechanical stimulation combined with PRP on rotator cuff repair in mice. Hypothesis: Mechanical stimulation combined with PRP can enhance BTI healing in a murine model of rotator cuff repair. Study Design: Controlled laboratory study. Methods: A total of 160 C57BL/6 mice were used. Overall, 40 mice were used to prepare PRP, while 120 mice underwent acute supraspinatus tendon (SST) repair. The animals were randomly assigned to 4 groups: control group, mechanical stimulation group, PRP group, and mechanical stimulation combined with PRP group (combination group). At 4 and 8 weeks postoperatively, animals were sacrificed, the eyeballs were removed to collect blood, and the SST–humeral complexes were collected. Histological, biomechanical, immunological, and bone morphometric tests were performed. Results: Histologically, at 4 and 8 weeks after surgery, the area of the fibrocartilage layer at the BTI in the combination group was larger than in the other groups. The content and distribution of proteoglycans in this layer in the combination group were significantly greater than in the other groups. At 8 weeks postoperatively, trabecular number, and trabecular bone thickness of the subchondral bone area of interest at the BTI of the combination group were greater than those of the other groups, bone volume fraction of the combination group was greater than the control group. On biomechanical testing at 4 and 8 weeks after surgery, the failure load and ultimate strength of the SST–humeral complex in the combination group were higher than in the other groups. Enzyme-linked immunosorbent assay results showed that, at 4 weeks postoperatively, the serum concentrations of transforming growth factor beta 1 and platelet-derived growth factor (PDGF) in the combination group were significantly higher than in the other groups; at 8 weeks, the PDGF-AB concentration in the combination group was higher than in the control and mechanical stimulation groups. Conclusion: Mechanical stimulation combined with PRP can effectively promote the early stage of healing after a rotator cuff injury. Clinical Relevance: These findings imply that mechanical stimulation combined with PRP can serve as a potential therapeutic strategy for rotator cuff healing.