In this paper, a kind of helix-like chiral metamaterial, which can be realized with multiple conventional lithography or electron beam lithographic techniques, is proposed to achieve broadband bianisotropic optical response analogous to helical metamaterial. On the basis of twisted metamaterial, via tailoring the relative orientation within the lattice, the anisotropy of arc is converted into magneto-electric coupling of closely spaced arc pairs, which leads to a broad bianisotropic optical response. By connecting the adjacent upper and lower arcs, the coupling of metasurface pairs is transformed to the coupling of the three-dimensional inclusions, and provides a much broader and higher bianisotropic optical response. For only a four-layer helix-like metamaterial, the maximum extinction ratio can reach 19.7. The operation band is in the wavelength range from 4.69 μm to 8.98 μm with an average extinction ratio of 6.9. And the transmittance for selective polarization is above 0.8 in the entire operation band. Such a structure is promising for integratable and scalable broadband circular polarizers, especially has great potential to act as broadband circular micropolarizers in the field of the full-stokes division of focal plane polarimeters.