An investigation into redistribution of vorticity for rapidly accelerating plates with varying kinematics and initial conditions has been performed. Both threedimensional particle tracking velocimetry and direct force measurements were applied simultaneously. The effective velocity of the feeding shear layer has been identified as the appropriate characteristic velocity rather than the commonly used plunge or free stream velocity. Based on this new normalization for circulation, it has been demonstrated that the existence of initial boundary-layer vorticity on the plunging plate -at least in the near-midplane region -does not contribute to the eventual vortex formation process. In accordance with the literature, however, the tip vortex positioning relative to the plate surface has been identified as an important contributor in the overall force production, particularly once the plate acceleration has ceased.