“…Therefore, in recent years, huge efforts were made to increase the rate capabilities of LIB by introducing new electroactive material classes e.g., spinel-structured materials such as Li 4 Ti 5 O 12 (LTO) and LiMn 2 O 4 (LMO) in a wide range of accessible nanostructures such as nanoparticles [4][5][6], nanotubes [7][8][9], nanowires [10,11], nanosheets [12][13][14], mesoporous materials [15][16][17] and many more. Although increasing rate capabilities were successfully achieved, it is well known that the electrochemical properties of the electrode materials do not play the only key role, the electrode and current collector interface architecture [18,19] are key as well. State of the art LIB electrodes are produced by mixing electrochemical active powders with polymer binders and conductive agents such as carbon black [20,21], carbon nanotubes [22,23], or graphene [24,25].…”