“…It is so because 2-dimensional Artin groups are torsion-free by [CD95b], and their cyclic subgroups are undistorted (see Theorem 1.4 below). Prior to our result solvability of the Conjugacy Problem was established only for a few particular subclasses of Artin groups: braid groups [Gar69], finite type Artin groups [BS72, Del72, Cha92, Cha95], large-type Artin groups [App84,AS83], triangle-free Artin groups [Pri86], 3-dimensional Artin groups of type FC [Bel05], certain 2-dimensional Artin groups with 3 generators [BC02], some Artin groups of Euclidean type [CC05,Dig06,Dig12,McC15,MS17], RAAG's [Ser89,Van94,HM95,CGW09]. In particular, the question about solvability of the Conjugacy Problem has been open for the class of 2-dimensional Artin groups.…”