Covalent organic frameworks (COFs) represent an emerging class of crystalline porous polymers characterized by their pre-designed interconnected structures formed via dynamic covalent bonds. These materials have garnered widespread attention in recent years. While applications of two-dimensional (2D) COFs have been extensively investigated since 2005, their practicality has been impeded by their limited specific surface area and the robust π-π stacking interaction. In contrast, three-dimensional (3D) COFs boast enhanced porosity, larger specific surface area, well-exposed functional groups, and an abundance of reaction sites, positioning them at the forefront of porous material research. They find extensive applications in diverse fields, including adsorption, separation, catalysis, and so on. This featured article provides a comprehensive exploration of the latest advancements in 3D COFs across their respective application domains. Additionally, we outline the current challenges that must be addressed and shed light on the promising prospects for the utilization of 3D COFs.