2020
DOI: 10.1002/zamm.201900319
|View full text |Cite
|
Sign up to set email alerts
|

Three‐dimensional Hiemenz stagnation‐point flows

Abstract: A modification of Hiemenz's two‐dimensional outer potential stagnation‐point flow of strain rate a is obtained by adding periodic radial and azimuthal velocities of the form brsin2θ and brcos2θ, respectively, where b is a shear rate. This leads to the discovery of a new family of three‐dimensional viscous stagnation‐point flows depending on the shear‐to‐strain‐rate ratio γ=b/a that exist over the range −∞<γ<∞ with reflectional symmetry about γ=0. Numerical solutions for the wall shear stress parameters and the… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
2

Citation Types

1
15
0

Year Published

2022
2022
2022
2022

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
(16 citation statements)
references
References 10 publications
1
15
0
Order By: Relevance
“…Following Weidman [24], we consider the three‐dimensional Hiemenz flow over a stretching/shrinking sheet. Let false(ur,uϕ,wfalse)$(u_r, u_\phi , w)$ be the velocity components in the directions of cylindrical coordinates false(r,ϕ,zfalse)$(r,\phi ,z)$, respectively.…”
Section: Flow Analysismentioning
confidence: 99%
See 4 more Smart Citations
“…Following Weidman [24], we consider the three‐dimensional Hiemenz flow over a stretching/shrinking sheet. Let false(ur,uϕ,wfalse)$(u_r, u_\phi , w)$ be the velocity components in the directions of cylindrical coordinates false(r,ϕ,zfalse)$(r,\phi ,z)$, respectively.…”
Section: Flow Analysismentioning
confidence: 99%
“…Let false(ur,uϕ,wfalse)$(u_r, u_\phi , w)$ be the velocity components in the directions of cylindrical coordinates false(r,ϕ,zfalse)$(r,\phi ,z)$, respectively. We get the following potential flow field [24]: urfalse(r,ϕfalse)=ar2false(1goodbreak+cos2ϕfalse)+brsin2ϕ,uϕfalse(r,ϕfalse)=ar2sin2ϕ+brcos2ϕ,wfalse(zfalse)=az,\begin{eqnarray} u_r(r,\phi )=\frac{ar}{2}(1+\cos 2\phi )+br \sin 2\phi ,\quad u_\phi (r,\phi )=-\frac{ar}{2}\sin 2\phi + br \cos 2\phi ,\quad w(z)=-az, \end{eqnarray}that satisfies the equation of continuity, that is rfalse(rurfalse)+ϕfalse(uϕfalse)+rzw=0,\begin{eqnarray} \frac{\partial }{\partial r}(ru_r)+\frac{\partial }{\partial \phi }(u_\phi )+r\frac{\partial }{\partial z}w=0, \end{eqnarray}and the corresponding pressure field is given by p=p0ρ2()a22false(1goodbreak+cos2ϕfalse)+absin2ϕ+b2r2+a2z2…”
Section: Flow Analysismentioning
confidence: 99%
See 3 more Smart Citations