Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Currently, clinical analysis of male infertility mainly relies on parameters of semen and sperm cells. However, the high diagnostic failure rates indicate that the current assessment methods are not sufficient and a new approach to evaluating sperm function still needs to be developed. Here we explored the feasibility of single-cell inductively coupled plasma mass spectrometry (sc-ICP-MS)-derived profiles to determine the elemental characteristics in viable capacitated sperm under normal and deficient conditions. To validate the measurements, we used male sterile Pmca4-KO mice with impaired calcium clearance, known to be dysregulated due to loss of calcium efflux capacity during sperm capacitation. Consistently, we observed significantly increased calcium intensities in Pmca4-KO sperm upon capacitation stimulation compared with control sperm from the cauda epididymides of wild-type control (WT) mice. More importantly, we explored that the characteristic signatures of calcium intensities in individual spikes derived from sc-ICP-MS was consistent with the dynamics of relative calcium levels in single sperm reported in the literature. Prominent alterations were also observed in the dynamic signatures of sc-ICP-MS-derived profiles of essential elements, particularly the redox-labile elements including copper, iron, manganese, selenium and zinc in Pmca4-KO sperm compared to WT controls. Therefore, our study demonstrates that elementomics of sc-ICP-MS-derived signals can reveal ionic dysregulation in PMCA4-deficient sperm, and that sc-ICP-MS assay can be applied for functional analysis of viable sperm in functional activities, such as capacitation stimulation. We propose that cell elementomics can be used as an alternative approach to assessing sperm quality and male fertility at the single-cell level.
Currently, clinical analysis of male infertility mainly relies on parameters of semen and sperm cells. However, the high diagnostic failure rates indicate that the current assessment methods are not sufficient and a new approach to evaluating sperm function still needs to be developed. Here we explored the feasibility of single-cell inductively coupled plasma mass spectrometry (sc-ICP-MS)-derived profiles to determine the elemental characteristics in viable capacitated sperm under normal and deficient conditions. To validate the measurements, we used male sterile Pmca4-KO mice with impaired calcium clearance, known to be dysregulated due to loss of calcium efflux capacity during sperm capacitation. Consistently, we observed significantly increased calcium intensities in Pmca4-KO sperm upon capacitation stimulation compared with control sperm from the cauda epididymides of wild-type control (WT) mice. More importantly, we explored that the characteristic signatures of calcium intensities in individual spikes derived from sc-ICP-MS was consistent with the dynamics of relative calcium levels in single sperm reported in the literature. Prominent alterations were also observed in the dynamic signatures of sc-ICP-MS-derived profiles of essential elements, particularly the redox-labile elements including copper, iron, manganese, selenium and zinc in Pmca4-KO sperm compared to WT controls. Therefore, our study demonstrates that elementomics of sc-ICP-MS-derived signals can reveal ionic dysregulation in PMCA4-deficient sperm, and that sc-ICP-MS assay can be applied for functional analysis of viable sperm in functional activities, such as capacitation stimulation. We propose that cell elementomics can be used as an alternative approach to assessing sperm quality and male fertility at the single-cell level.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.