The first high-throughput system for the electrical detection of cross-sectional position and velocity of individual particles flowing through a rectangular microchannel is presented. Lateral position (along channel width) and vertical position (along channel height) are measured using two different sets of coplanar electrodes. In particular, the ratio of travel times measured with electrodes generating a current flow transverse or oblique with respect to particle trajectory yields lateral position. The relative prominence and transit time of a bipolar double-Gaussian signal obtained with a suited electrode configuration, respectively, supply vertical position and velocity. The operating principle is presented by means of finite element numerical simulations. The method is experimentally validated by comparing the electrical estimates of position and velocity of polystyrene beads with optical estimates obtained by processing high-speed images. The system is used to observe bead focusing at different particle Reynolds numbers. This system, providing a fully electrical characterization of single-particle motion, represents a powerful tool, e.g. to understand fluid motion at the microscale, in particle separation studies, or to assess the performance of particle focusing devices. Moreover, it can be simultaneously used to perform single-cell impedance spectroscopy, thus achieving an unprecedented multiparamteric characterization.