Smart microstructured materials enable functions such as actuation, detection, transportation, and sensing with potential applications ranging from robotics and photonics to biomedical devices. Of the many materials systems, liquid crystal polymer networks (LCN) are fascinating owing to their ability to exhibit reversible macroscopic deformation driven by a molecular order–disorder phase transition. LCN have been increasingly explored for their utility in the design and fabrication of smart actuating devices capable of complex shape changes or motions upon external stimulation of humidity, heat, light, and other stimuli, and recent studies in this field show that their actuation complexity can be enriched and actuation performance enhanced by having some sort of microstructures. Herein, the recent progress in microstructured actuation of LCN materials with substructures in scale ranging from micrometer to millimeter is reported, placing the emphasis on the main approaches to generating a microstructure in LCN, which include patterned LC director fields, patterned chain crosslinking in LCN with uniaxial orientation of mesogens, 3D/4D printing, and replica molding. The potential applications in microstructured 3D actuators and devices as well as functional LCN surfaces are also highlighted, with an outlook on important issues and future trends in smart microstructured LCN materials and actuators.