2008
DOI: 10.1002/anie.200804355
|View full text |Cite
|
Sign up to set email alerts
|

Three‐Dimensional Porous Silicon Particles for Use in High‐Performance Lithium Secondary Batteries

Abstract: Particle‐larly good! Thermal annealing and etching of physical composite butyl‐capped Si gels and SiO2 nanoparticles at 900 °C under an Ar atmosphere is a versatile method for the formation of 3D porous bulk Si particles (see picture). Complete etching of the SiO2 from the SiO2/carbon‐coated Si (c‐Si) composite results in the retention of the remaining c‐Si as a highly porous but interconnected structure, which preserves the starting morphology.

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1

Citation Types

9
434
1
1

Year Published

2013
2013
2021
2021

Publication Types

Select...
5
4

Relationship

1
8

Authors

Journals

citations
Cited by 761 publications
(453 citation statements)
references
References 31 publications
9
434
1
1
Order By: Relevance
“…To achieve high-energy-density LIBs, silicon (Si) has been extensively investigated as a negative-electrode (anode) material due to its high theoretical specific capacity of 3580 mAh g -1 for Li 15 Si 7 [6][7][8][9][10]. However, the practical application of Si to LIBs is quite challenging because Si is associated with significant volume changes which arise during lithium insertion and extraction, which can hasten mechanical fracture of the electrode, cause a loss of electrical conduction paths, and results in continuous electrolyte decomposition at the active surface when exposed by the cracking of Si during cycling, as depicted in Fig.…”
Section: Introductionmentioning
confidence: 99%
See 1 more Smart Citation
“…To achieve high-energy-density LIBs, silicon (Si) has been extensively investigated as a negative-electrode (anode) material due to its high theoretical specific capacity of 3580 mAh g -1 for Li 15 Si 7 [6][7][8][9][10]. However, the practical application of Si to LIBs is quite challenging because Si is associated with significant volume changes which arise during lithium insertion and extraction, which can hasten mechanical fracture of the electrode, cause a loss of electrical conduction paths, and results in continuous electrolyte decomposition at the active surface when exposed by the cracking of Si during cycling, as depicted in Fig.…”
Section: Introductionmentioning
confidence: 99%
“…To suppress the volume changes of Si-based anodes, nanostructured anode materials [11,12], nanocomposites of anode materials, porous structures to mitigate the disintegration of Si particles due to colossal volume changes, and a proper electrode design to optimize structural factors such as the particle size, space between the particles, and polymeric binders have been explored to develop anodes that undergo less of a volume change [15,16]. In particular, attention has been devoted to the development of functional polymeric binders, as the polymer binder is a material that is very important for the binding of the Si-active materials of the electrodes.…”
Section: Introductionmentioning
confidence: 99%
“…Thus, much research has been focused on high capacity materials such as silicon (4200 mAh/g), [1][2][3][4][5][6] germanium (1623 mAh/g), [7][8][9][10][11][12][13] and tin (993 mAh/g) [14][15][16][17][18][19] to replace the graphite anode. The oxides of these metals (SiO, [20][21][22][23] Germanium dioxide nanoparticles have been previously studied as anode material for LIBs and were reported to react with up to 9 Li + during the first discharge cycle.…”
mentioning
confidence: 99%
“…Проте, як показали подальші дослідження, у процесі електрохімічного впровадження / екстракції йонів літію в електродний матеріал на основі кремнію, останній зазнає значних об'ємних змін ( об'єм комірки в перерахунку на один атом кремнію для сполуки Li 4,4 Si більш, ніж у 4 рази перевищує об'єм комірки вихідного матеріалу, тобто спостерігається 400 % об'ємне розширення ґратки кремнію), що приводить до розтріскування та руйнування елект-роду [5,6]. Для подолання вказаної проблеми зменшували розміри частинок кремнію [7], покращу-вали електричний контакт між частинками кремнію за рахунок введення струмопровідних добавок (графіту і / або нанорозмірної вуглецевої сажі) в мікро-Si аноди [8], використовували кремнієві нано-трубки [9,10], нанодротини [11,12], 3D-пористі частинки кремнію [13,14]. Інший підхід передбачав застосування композиційних електродних матеріалів, сформованих з неактивної чи активної матриці-"господаря", в якій дисперговані частинки кремнію.…”
Section: вступunclassified