In this study, supersonic gaseous detonation initiation and propagation by single- and symmetric-jets are compared, and the effects of symmetric-jets of different intensities on the detonation are further investigated to obtain a more comprehensive understanding of the initiation mechanism of hot jet in supersonic mixtures. The two-dimensional reactive Navier–Stokes equations, together with a one-step Arrhenius chemistry model, are adopted to analyze the flow field structure. The results show that the bow shocks induced by symmetric-jets interacting with each other will achieve local detonation combustion. Influenced by the unstable shear layer behind the triple point, a large-scale vortex shedding is formed in the flow field, thus promoting the consumption of the unburned region. By comparing with the single-jet, it is found that the dual-jet initiation method can shorten the distance to complete initiation, but has little effect on the detonation overdrive degree. In addition, a study of the impact of jet size parameters on the symmetric-jet initiation further revealed that there is a critical value, above which the ignition decreases rapidly which is a significant advantage over single-jet. However, below this threshold, detonation initiation will rely on the energy generated by the collision of Mach stems formed at the walls, resulting in a slower ignition rate compared to a single-jet. Therefore, the use of the appropriate jet strength when using a symmetric-jet will result in a more desirable ignition velocity and a shorter distance to achieve detonation.