A full-scale experimental study of turbulent boundary layer flows under irregular waves and currents is conducted with the primary objective to investigate the equivalent-wave concept by Madsen (1994). Irregular oscillatory flows following the bottom-velocity spectrum under realistic surface irregular waves are produced over two fixed rough bottoms in an oscillatory water tunnel, and flow velocities are measured using a Particle Image Velocimetry. The root-mean-square (RMS) value and representative phase lead of wave velocities have vertical variations very similar to those of the first-harmonic velocity of periodic wave boundary layers, e.g., the RMS wave velocity follows a logarithmic distribution controlled by the physical bottom roughness in the very near-bottom region. The RMS wave bottom shear stress and the associated representative phase lead can be accurately predicted using the equivalent-wave approach. The spectra of wave bottom shear stress and boundary layer velocity are found to be proportional to the spectrum of free-stream velocity. Currents in the presence of irregular waves exhibit the classic two-log-profile structure with the lower log-profile controlled by the physical bottom roughness and the upper log-profile controlled by a much larger apparent roughness. Replacing the irregular waves by their equivalent sinusoidal waves virtually makes no difference for the coexisting currents. These observations, together with the excellent agreement between measurements and model predictions, suggest that the equivalent-wave representation adequately characterizes the basic wave-current interaction under irregular waves.