In the scanning transmission electron microscope, both phase imaging of beam-sensitive materials and characterization of a material’s functional properties using in situ experiments are becoming more widely available. As the practicable scan speed of 4D-STEM detectors improves, so too does the temporal resolution achievable for both differential phase contrast (DPC) and ptychography. However, the read-out burden of pixelated detectors, and the size of the gigabyte to terabyte sized data sets, remain a challenge for both temporal resolution and their practical adoption. In this work, we combine ultra-fast scan coils and detector signal digitization to show that a high-fidelity DPC phase reconstruction can be achieved from an annular segmented detector. Unlike conventional analog data phase reconstructions from digitized DPC-segment images yield reliable data, even at the fastest scan speeds. Finally, dose fractionation by fast scanning and multi-framing allows for postprocess binning of frame streams to balance signal-to-noise ratio and temporal resolution for low-dose phase imaging for in situ experiments.