This review summarizes the development and application of a variety of EPR imaging modalities including spatial, spectral-spatial (spectroscopic), gated-imaging and oxygen mapping to cardiovascular studies. It has been hypothesized that free radical metabolism, oxygenation and nitric oxide generation in biological organs such as the heart may vary over the spatially defined tissue structure. We have developed instrumentation optimized for 3D spatial and 3D or 4D spectral-spatial imaging of free radicals at 1.2 GHz. Using this instrumentation high quality 3D spectral-spatial imaging of nitroxyl (nitroxide) metabolism was performed, as well as spatially localized measurements of oxygen concentrations, based on the oxygen-dependent line-broadening of the EPR spectrum. Both exogenously infused probes and endogenous radicals were used to obtain the images. It is demonstrated that the EPR imaging is a powerful tool which can provide unique information regarding the spatial localization of free radicals, oxygen and nitric oxide in biological organs and tissues.