The linear and nonlinear optical properties such as optical absorption and refractive index change associated with intersubband transitions in a two-electron quantum dot (QD) in the presence of an external electric field have been investigated theoretically by using the perturbation method. The exchange force, which is a strictly quantum mechanical phenomenon, has also been considered. Numerical results on typical GaAs/AlGaAs materials show that an increase of the electric field decreases the oscillator strengths, the peak positions of absorption coefficients as well as the refractive index changes. Additionally, an increase of the confinement frequency (dot size) increases (decreases) the absorption coefficients but does not significantly affect the refractive index changes. It is also observed that the intensity of the illumination and the relaxation time have drastic effects on nonlinear optical properties. Finally, we note that the optical absorption coefficients and refractive index changes of two electrons are about five times higher than that of a one-electron QD.