Microsimulation is becoming increasingly important in traffic demand modeling. The major advantage over traditional four-step models is the ability to simulate each traveler individually. Decision-making processes can be included for each individual. Traffic demand is the result of the different decisions made by individuals; these decisions lead to plans that the individuals then try to optimize. Therefore, such microsimulation models need appropriate initial demand patterns for all given individuals. The challenge is to create individual demand patterns out of general input data. In practice, there is a large variety of input data, which can differ in quality, spatial resolution, purpose, and other characteristics. The challenge for a flexible demand-modeling framework is to combine the various data types to produce individual demand patterns. In addition, the modeling framework has to define precise interfaces to provide portability to other models, programs, and frameworks, and it should be suitable for large-scale applications that use many millions of individuals. Because the model has to be adaptable to the given input data, the framework needs to be easily extensible with new algorithms and models. The presented demand-modeling framework for large-scale scenarios fulfils all these requirements. By modeling the demand for two different scenarios (Zurich, Switzerland, and the German states of Berlin and Brandenburg), the framework shows its flexibility in aspects of diverse input data, interfaces to third-party products, spatial resolution, and last but not least, the modeling process itself.