Elliptical Gaussian beams generated by laser diodes (LDs) often exhibit asymmetrical divergence angle distribution, which limits their practical applications. In this study, we propose what we believe is a novel approach to shape and collimate the elliptical output beam from a LD. The design process involves the construction of two freeform reflective surfaces on a reference circle using a three-dimensional point-by-point iterative method, based on the law of conservation of energy, the vector reflection theory, and Fermat’s principle. The output beam’s maximum divergence angle is effectively compressed to 3.1579 mrad. The design is compact with a folded optical path and antenna size of 368.8cm3. This paper presents a comprehensive design and optimization process, along with an in-depth analysis of the system’s performance, thereby offering novel insights for emerging optical design practitioners.