Earlier beam-foil measurements have targeted 4s-4p intercombination transitions in the Zn-, Ga- and Ge-like ions of Nb (Z=41), Mo (Z=42), Rh (Z=44), Ag (Z=47) and I (Z=53). At the time, the spectra were calibrated with literature data on prominent lines in the Cu- and Zn-like ions. Corresponding literature data on the intercombination transitions in Ga- and Ge-like ions were largely lacking, which caused some ambiguity in the line identifications. We review the (mostly computational) progress made since. We find that a consistent set of state-of-the-art computations of Ga- and Ge-like ions would be highly desirable for revisiting the beam-foil data and the former line identifications for the elements from Kr (Z=36) to Xe (Z=54). We demonstrate that the literature data for these two isoelectronic sequences are insufficient, and we contribute reference computations in the process. We discuss the option of electron beam ion trap measurements as an alternative to the earlier use of classical light sources, beam-foil interaction and laser-produced plasmas, with the example of Xe (Z=54).