Load modeling plays a significant impact in assessing power system stability margin, control, and protection. Frequency in the power system is desired to be kept constant, but in a real sense, it is not constant as loads continually change with time. In much literature, frequency dynamics are ignored in the formulation of load models for the basic assumption that it does not affect the models. In this paper, the composite load model was formulated with Voltage-Frequency Dependency (V-FD) on real and reactive powers and applied to estimate the load model. 2- Area network 4- machines Kundur test network was used for testing the developed model. The model was trained with measurements from a low voltage distribution network supplying the Electrical Engineering department at Ahmadu Bello University, Zaria. Both training and testing data were captured under normal system operation (dynamics). To evaluate the V-FD model performance, Voltage-Dependent (VD) model was examined on the same measured data. The work makes use of the Feed Forward Neural Network (FFNN) as a nonlinear estimator. Results obtained indicate that including frequency dynamics in modeling active power reduces the accuracy of the model. While in modeling reactive power the model performance improves. Hence, it can be said that including frequency dynamics in load modeling depends on the intended application of the model.