The present work explores the power quality problems of a microgrid in the aviation field, such as frequency offset or waveform distortion, caused by voltage imbalance and nonlinear load, to ensure the efficient and stable flight of aircraft, unmanned aerial vehicles, and other aircraft. There are many problems such as excessive harmonics, voltage imbalance, and direct current (DC) component in aviation variable frequency power supply voltage in microgrid under different conditions. Therefore, three kinds of second-order generalized integrators (SOGIs) with different structures are combined with linear Kalman filter phase-locked loops (PLLs). Besides, intelligent sensors are utilized for signal processing. Finally, simulation experiments are conducted to compare three SOGIs. The results show that the system is stable when the parameters k1 = 738.9553, k2 = 1092108.98405, k3 = 1477.91, and Ts = 0.000125 s and k ranges in [0.5, 3]. The angular frequency of PLL output is very low under the problems of many harmonics, three-phase voltage imbalance, and DC component
ω
g
. The angular frequency
ω
g
output by the PLL finally changes linearly with a change rate of 400 πrad/s2, so that the output phase angle
θ
g
reaches a stable state. Thus, the proposed steady-state linear Kalman filter phase locking can accurately phase-lock the aviation variable frequency power supply. It provides an important reference for the power supply module in the microgrid to select the appropriate second-order generalized integrator to realize the accurate phase locking of the phase-locked loop under different conditions.