The advent of composite co-cured and co-bonded integrated construction in aircraft structures has lead to the replacement of fastened joints with bonded joints between the skins and the stiffeners. Skin-stiffener debondings could occur due to impact or other operational reasons and it is usually internal failure. Damage identification of bonded components, which are often vital elements in many structures, is crucial for the prevention of failure of the entire structure. Thus, different researchers have investigated vibration-based methods as an alternative technique to be used in the structural health monitoring (SHM) systems. Hence, this work consists of investigating experimentally through the vibration-based method, the dynamic behavior changes in a bonded metal-composite structure by using piezoelectric transducer and accelerometers in order to monitory the damage. The damage is an artificial debonding in the joint, which was simulated by inserting Teflon™ tapes within the joint. In-situ inspection as ensured by accelerometer and piezoelectric transducers (PZT) bonded to the structure. Indeed, with a simple comparison of the frequency response functions is difficult to conclude if there is damage in the structure, unless a large damage is presented. However, by using damage metrics, it is possible to identify the damage with more accuracy. Thus, the experimental results obtained by the accelerometers were compared to the data provided by the smart composite sensors (PZT). Finally, it was discussed the advantages and limitations of the experimental analyses and the identification technique proposal.