SUMMARYMice that lack the matricellular protein thrombospondin 2 (TSP2) develop a pleiotropic phenotype characterized by morphological changes in connective tissues, an increase in vascular density, and a propensity for bleeding. Furthermore, dermal cells derived from TSP2-null mice display adhesion defects, a finding that implicates TSP2 in cell-matrix interactions. To gain a better understanding of the participation of TSP2 in the development and maturation of the mouse, we examined its distribution in embryonic and adult tissues. Special attention was paid to the presence of TSP2 in collagen fibers, because collagen fibrils in the TSP2-null mouse appear to be irregular in size and contour by electron microscopy. Immunohistochemical analysis of Day 15 and Day 18 embryos revealed TSP2 in areas of chondrogenesis, osteogenesis, and vasculogenesis, and in dermal and other connective tissue-forming cells. Distinctly different patterns of deposition of TSP2 were observed in areas of developing cartilage and bone at Days 15 and 18 of embryonic development. A survey of adult tissues revealed TSP2 in dermal fibroblasts, articular chondrocytes, Purkinje cells in the cerebellum, Leidig cells in the testis, and in the adrenal cortex. Dermal fibroblasts were also shown to synthesize TSP2 in vitro. The distribution of TSP2 during development is in keeping with its participation in the formation of a variety of connective tissues. In adult tissues, TSP2 is located in the pericellular environment, where it can potentially influence the cell-matrix interactions associated with cell movement and tissue repair. (J Histochem Cytochem 46:1007-1015, 1998)