Artemisia annua L. (A. annua), a Traditional Chinese Medicine (TCM) that has been utilized in China for centuries, is known for its potential anticancer properties. However, the main components and mechanism of action of A. annua on endometrial carcinoma have not been reported. We used the TCMSP database to identify the active components of A. annua and their corresponding gene targets. We then obtained the gene targets specific to endometrial cancer from The Cancer Genome Atlas (TCGA) and GeneCards databases. The gene targets common to three databases were selected, and a "component-target" network was constructed. Protein−protein interaction (PPI) network analysis and ranking of the target proteins identified the key protein PTGS2 network analysis, and ranking of the target proteins identified the key protein PTGS2. We also screened the active components of A. annua and found that quercetin, kaempferol, luteolin, isorhamnetin, artemisin, and stigmasterol had the most targets. Molecular docking models were established for these six components with PTGS2, revealing strong binding activity for all of them. Finally, we conducted validation experiments to assess the effects of quercetin, an active component of A. annua, on endometrial cancer cells (HEC-1-A and Ishikawa cells). Our findings demonstrate that quercetin has the potential to inhibit both cell growth and migration, while also suppressing the expression of PTGS2.