The origin of the Stac Fada Member has been debated for decades with several early hypotheses being proposed, but all invoking some connection to volcanic activity. In 2008, the discovery of shocked quartz led to the hypothesis that the Stac Fada Member represents part the continuous ejecta blanket of a meteorite impact crater, the location of which was, and remains, unknown. In this paper, we confirm the presence of shock-metamorphosed and -melted material in the Stac Fada Member; however, we also show that its properties are unlike any other confirmed and well documented proximal impact ejecta deposits on Earth. Instead, the properties of the Stac Fada Member are most similar to the Onaping Formation of the Sudbury impact structure (Canada) and impact melt-bearing breccias from the Chicxulub impact structure (Mexico). We thus propose that, like the Sudbury and Chicxulub deposits, Melt Fuel Coolant Interactions – akin to what occur during phreatomagmatic volcanic eruptions – played a fundamental role in the origin of the Stac Fada Member. We conclude that these rocks are not primary impact ejecta but instead were deposited beyond the extent of the continuous ejecta blanket as high-energy ground-hugging sediment gravity flows.