Abstract-A major challenge of wireless multicast is to be able to support a large number of users while simultaneously maintaining low delay and low feedback overhead. In this paper, we develop a joint coding and feedback scheme named Moving Window Network Coding with Anonymous Feedback (MWNC-AF) that successfully addresses this challenge. In particular, we show that our scheme simultaneously achieves both a constant decoding delay and a constant feedback overhead, irrespective of the number of receivers n, without sacrificing either throughput or reliability. We explicitly characterize the asymptotic decay rate of the tail of the delay distribution, and prove that transmitting a fixed amount of information bits into the MWNC-AF encoder buffer in each time-slot (called "constant data injection process") achieves the fastest decay rate, thus showing how to obtain delay optimality in a large deviation sense. We then investigate the average decoding delay of MWNC-AF, and show that when the traffic load approaches the capacity, the average decoding delay under the constant injection process is at most one half of that under a Bernoulli injection process. In addition, we prove that the per-packet encoding and decoding complexity of MWNC-AF both scale as O(log n), with the number of receivers n. Our simulations further underscore the performance of our scheme through comparisons with other schemes and show that the delay, encoding and decoding complexity are low even for a large number of receivers, demonstrating the efficiency, scalability, and ease of implementability of MWNC-AF.Index Terms-Wireless multicast, low delay, low feedback, scaling law analysis.