Today, software engineering is challenged to handle more and more large-scale distributed systems with guaranteed quality-of-service. Component-based architectures have been established to build such systems in a more structured and manageable way. Modern architectures often utilize eventbased communication which enables loosely-coupled interactions between components and leads to improved system scalability. However, the loose coupling of components makes it challenging to model such architectures in order to predict their quality properties, e.g., performance and reliability, at system design time. In this paper, we present an extension of the Palladio Component Model (PCM) and the Palladio software quality prediction framework, enabling the modeling of event-based communication in component-based architectures. The contributions include: i) a meta-model extension supporting events as first class entities, ii) a modeto-model transformation from the extended to the original PCM, iii) an integration of the transformation into the Palladio tool chain allowing to use existing model solution techniques, and iv) a detailed evaluation of the reduction of the modeling effort enabled by the transformation in the context of a real-world case study.