Human distal pollical phalanx form has been associated with tool manufacture, and the broad tuft of this bone in Neanderthals has been suggested to be a climatic adaptation and/or an aid to a tremendously powerful grip. A wide first metacarpal head has also been proposed to be useful in distinguishing tool-dependent hominids from those less reliant on tools. In order to contribute to an evaluation of these hypotheses variation in first metacarpal and distal phalanx shape is explored among samples of modern humans and compared to that of fossil hominids. Modern humans are from the Terry Collection, Larsen Bay, a Chinese-Alaskan cemetery, Egypt, and Sully and Mobridge. Hominid fossils include AL 333w-39, SKX 5016, SK 84, Stw 294, OH 7, several Neanderthals, Skhūl 4 and 5, and Predmostí 3. Analysis involves length-width ratios, regressions of distal phalanx tuft width on base width and of metacarpal head width on length, and pattern profiles based on Z-scores with reference to the Larsen Bay sample. Larsen Bay individuals are robust, while Terry "blacks," Egyptians, and Chinese-Alaskan males tend to be gracile. Fossil hominids are most distinctive for distal phalanx radioulnar tuft and mid-shaft widths relative to length. Security of grip is one plausible explanation. While most modern samples are positively allometric for tuft width relative to base width, the Larsen Bay and fossil hominid samples are not; thus caution is advised in accepting a base-tuft width comparison as a tool-dependence marker. Separation from modern humans is not easily achieved with metacarpal measures, but the Hadar metacarpal has distinctively narrow radioulnar head width ratios. While first metacarpal head expansion among hominids may plausibly be related to tool manufacture, other activities that place stress on the metacarpophalangeal joint should also be considered.