BackgroundPhosphoinositides mediate one of the intracellular signal transduction pathways and produce a class of second messengers that are involved in the action of hormones and neurotransmitters on target cells. Thyroid hormones are well known regulators of lipid metabolism and modulators of signal transduction in cells. However, little is known about phosphoinositides cycle regulation by thyroid hormones. The present paper deals with phosphoinositides synthesis de novo and acylation in liver at different thyroid status of rats.ResultsThe experiments were performed in either the rat liver or hepatocytes of 90- and 720-day-old rats. Myo-[3H]inositol, [14C]CH3COONa, [14C]oleic and [3H]arachidonic acids were used to investigate the phosphatidylinositol (PtdIns), phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate (PtdInsP2) synthesis. 1-methyl, 2-mercaptoimidazol-induced hypothyroidism was associated with the decrease of myo-[3H]inositol and [3H]arachidonic acids incorporation into liver phosphoinositides and total phospholipids, respectively. The thyroxine (L-T4) injection to hypothyroid animals increased the hormones contents in blood serum and PtdInsP2 synthesis de novo as well as [3H]arachidonic acids incorporation into the PtdIns and PtdInsP2. Under the hormone action, the [14C]oleic acid incorporation into PtdIns reduced in the liver of hypothyroid animals. A single injection of L-T4 to the euthyroid [14C]CH3COONa-pre-treated animals or addition of the hormone to a culture medium of hepatocytes was accompanied by the rapid prominent increase in the levels of the newly synthesized PtdIns and PtdInsP2 and in the mass of phosphatidic acid in the liver or the cells.ConclusionsThe data obtained have demonstrated that thyroid hormones are of vital importance in the regulation of arachidonate-containing phosphoinositides metabolism in the liver. The drug-induced malfunction of thyroid gland noticeably changed the phosphoinositides synthesis de novo. The L-T4 injection to the animals was followed by the time-dependent increase of polyphosphoinositide synthesis in the liver. The both long-term and short-term hormone effects on the newly synthesized PtdInsP2 have been determined.