Local thyroid hormone catabolism within the mediobasal hypothalamus (MBH) by thyroid hormone-activating (DIO2) and -inactivating (DIO3) enzymes regulates seasonal reproduction in birds and mammals. Recent functional genomics analysis in birds has shown that long days induce thyroid-stimulating hormone production in the pars tuberalis (PT) of the pituitary gland, which triggers DIO2 expression in the ependymal cells (EC) of the MBH. In mammals, nocturnal melatonin secretion provides an endocrine signal of the photoperiod to the PT that contains melatonin receptors in high density, but the interface between the melatonin signal perceived in the PT and the thyroid hormone levels in the MBH remains unclear. Here we provide evidence in mice that TSH participates in this photoperiodic signal transduction. Although most mouse strains are considered to be nonseasonal, a robust photoperiodic response comprising induced expression of TSHB (TSH  subunit), CGA (TSH ␣ subunit), and DIO2, and reduced expression of DIO3, was observed in melatonin-proficient CBA/N mice. These responses could not be elicited in melatonin-deficient C57BL/6J, but treatment of C57BL/6J mice with exogenous melatonin elicited similar effects on the expression of the abovementioned genes as observed in CBA/N after transfer to short-day conditions. The EC was found to express TSH receptor (TSHR), and ICV injection of TSH induced DIO2 expression. Finally, we show that melatonin administration did not affect the expression of TSHB, DIO2, and DIO3 in TSHR-null mice. Taken together, our findings suggest that melatonin-dependent regulation of thyroid hormone levels in the MBH appears to involve TSH in mammals.circadian rhythm ͉ melatonin ͉ pars tuberalis ͉ photoperiodism ͉ type 2 and 3 iodothyronine deiodinases O rganisms living outside the tropics detect and predict seasonal changes in day length (photoperiod) to adapt various metabolic and behavioral functions to the environment. This mechanism, called photoperiodism, allows animals to control the timing of reproduction so that they can raise their offspring in spring and summer when food is most abundant. Among vertebrates, birds possess a highly sophisticated photoperiodic mechanism and show robust responses to photoperiodic changes. Taking advantage of the elaborate avian photoperiodic system, we have recently revealed the gene cascade regulating the photoperiodic response of reproduction in Japanese quail (Coturnix japonica) by using a functional genomics approach (1, 2). Exposure to long days induced thyroid-stimulating hormone (TSH), a heterodimer of the TSH  subunit (TSHB), and the common glycoprotein ␣ subunit (CGA, also called TSH ␣ subunit), in the pars tuberalis (PT) of the pituitary gland. TSH triggers the expression of type 2 iodothyronine deiodinase (DIO2) in the ependymal cells (EC) lining the ventrolateral walls of the third ventricle (i.e., the infundibular recess) within the mediobasal hypothalamus (MBH). DIO2 is a thyroid hormoneactivating enzyme that converts the prohormone thyroxine...