MXenes have attracted great interests as supercapacitors due to their metallic conductivity, high density, and hydrophilic nature. Herein we report Ti3C2‐Cu/Co hybrids via molten salt etching in which the existence of metal atoms and their interactions with MXene via surficial O atoms were elucidated by XAFS for the first time. The electrochemical investigation of Ti3C2‐Cu electrode demonstrated the pseudocapacitive contribution of Cu and a splendid specific capacitance of 885.0 F g−1 at 0.5 A g−1 in 1.0 M H2SO4. Symmetric supercapacitor Ti3C2‐Cu//Ti3C2‐Cu was demonstrated with operating voltage of 1.6 V, areal capacitance of 290.5 mF cm−2 at 1 mA cm−2, and stability over 10 000 cycles. It delivered an areal energy density of 103.3 μWh cm−2 at power density of 0.8 mW cm−2, based on which a supercapacitor pouch was fabricated. It provides deeper insights into the molten salt mechanism and strategies for designing MXene‐based materials for electrochemical energy storage.