Background Total knee arthroplasty is the most effective treatment for advanced-stage knee arthritis, and the majority of knee prostheses are made of metal. Nevertheless, metal prostheses still have several problems. The objective of this study is to introduce new metal-free knee prostheses made of polyether-ether-ketone (PEEK) and to compare their cement bond strength with metal prostheses. Methods Twelve sets of knee prostheses were divided into four groups (unloaded PEEK, unloaded Metal, 10 million cycles (MC) PEEK, 10 MC Metal, N = 3 each), and then attached to composite bones using bone cement. Both the 10 MC PEEK and 10 MC Metal groups were subjected to dynamic gait simulations of 10 MC, whereas the other two sets were not. Afterwards, a pull-off strength test was performed on the femoral prostheses and a shear strength test was performed on the tibial prostheses. Results No apparent cracks were observed in the bone cement after subjecting the PEEK and Metal groups to 10 million cycles of dynamic simulation. No statistically significant differences were observed ( p > .05) in the strength tests for unloaded PEEK vs. unloaded Metal, 10 MC PEEK vs.10 MC Metal in the femoral pull-off test, and for unloaded PEEK vs. unloaded Metal in the tibial shear test. The shear strength of 10 MC PEEK was significantly lower ( p < .05) compared to that of 10 MC Metal. Conclusions By comparing the force analysis of previous investigations on knee prostheses with the failure pattern observed in the PEEK knee prosthesis of this study, which replicates that of the metal prosthesis. We believe that the combination of the peek knee prosthesis with bone cement is reliable. We anticipate that metal-free PEEK knee prostheses will find application in Total Knee Arthroplasty (TKA) in the future, thereby benefiting patients.