Anterior cruciate ligament (ACL) rupture is one of the most common knee injuries with an annual incident rate estimated to range between 30 to 78 per 100,000 person-years. To treat a ruptured ACL surgical reconstruction (ACLR) using a tendon graft is the current standard. While tendon grafts offer a viable solution to knee instability caused by ACL rupture many patients may face secondary pathologies like post traumatic osteoarthritis which can be devastating to the young, physically active population that this injury effects. These poor outcomes following ACLR may be associated with poor ACL graft healing and the unnatural, inferior scar tissue formation postoperatively at the tendon-bone enthesis. Stem cell therapies have been proposed not only as a therapeutic option for this substantial issue, but to also accelerate healing to decrease the lengthy time it takes to retain normal knee mechanical function. Many promising stem cells have been analyzed in ACL graft regeneration such as: bone marrow mesenchymal stem cells (bMSCs), ACL-derived stem cells, tendon derived stem cells (TDSCs), adipose derived stem cells (ADSCs), periosteum derived stem cells (PDCs), umbilical cord blood derived mesenchymal stem cells (UCB-MSCs) and induced pluripotent stem cells (iPSCs). Of the Multiple analyzed stem cell lineages many have demonstrated the ability to effectively both improve and accelerate ACL graft healing. This literature review will discuss and summarize the current knowledge, methods, limitations, and future prospect of stem cell therapies in ACL graft regeneration.