Background: Ligands consisting of two aryl moieties connected via a short spacer were shown to be potent inhibitors of monoamine oxidases (MAO) A and B, which are known as suitable targets in treatment of neurological diseases. Based on this general blueprint, we synthesized a series of 66 small aromatic amide derivatives as novel MAO A/B inhibitors. Methods: The compounds were synthesized, purified and structurally confirmed by spectroscopic methods. Fluorimetric enzymological assays were performed to determine MAO A/B inhibition properties. Mode and reversibility of inhibition was determined for the most potent MAO B inhibitor. Docking poses and pharmacophore models were generated to confirm the in vitro results. Results: N-(2,4-Dinitrophenyl)benzo[d][1,3]dioxole-5-carboxamide (55, ST-2043) was found to be a reversible competitive moderately selective MAO B inhibitor (IC 50 = 56 nM, K i = 6.3 nM), while N-(2,4-dinitrophenyl)benzamide (7, ST-2023) showed higher preference for MAO A (IC 50 = 126 nM). Computational analysis confirmed in vitro binding properties, where the anilides examined possessed high surface complementarity to MAO A/B active sites. Conclusion: The small molecule anilides with different substitution patterns were identified as potent MAO A/B inhibitors, which were active in nanomolar concentrations ranges. These small and easily accessible molecules are promising motifs, especially for newly designed multitargeted ligands taking advantage of these fragments.