2024
DOI: 10.1145/3626106
|View full text |Cite
|
Sign up to set email alerts
|

Tight Sum-of-squares Lower Bounds for Binary Polynomial Optimization Problems

Adam Kurpisz,
Samuli Leppänen,
Monaldo Mastrolilli

Abstract: For binary polynomial optimization problems of degree 2 d with n variables Sakaue, Takeda, Kim and Ito [SIAM J. Optim., 2017] proved that the \(\lceil \frac{n+2d-1}{2}\rceil \) th semidefinite (SDP) relaxation in the SoS/Lasserre hierarchy of SDP relaxations provides the exact optimal value. When n is an odd number, we show that their analysis is tight, i.e. we prove that … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 29 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?