Abstract:Bi-quadratic programming over unit spheres is a fundamental problem in quantum mechanics introduced by pioneer work of Einstein, Schrödinger, and others. It has been shown to be NP-hard; so it must be solve by efficient heuristic algorithms such as the block improvement method (BIM). This paper focuses on the maximization of bi-quadratic forms, which leads to a rank-one approximation problem that is equivalent to computing the M-spectral radius and its corresponding eigenvectors. Specifically, we provide a tig… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.