Quasicrystals possess long-range positional and orientational order. However, they cannot be periodic in space due to their non-crystallographic symmetries such as a 10-fold rotational axis. We perform Monte Carlo simulations of two-dimensional hard-needle systems subject to a quasiperiodic substrate potential. We determine phase diagrams as a function of density and potential strength for two needle lengths. With increasing potential strength short needles tend to form isolated clusters that display directional order along the decagonal directions. Long needles create interacting clusters that stabilize the nematic phase. At large potential strengths the clusters position themselves on two interwoven Fibonacci sequences perpendicular to the cluster orientation. Alternatively, one obtains extended domains of needle clusters which are aligned along all decagonal symmetry directions.