Recently, Takahashi established a new approximation theory for finitely generated modules over commutative Noetherian rings, which unifies the spherical approximation theorem due to Auslander and Bridger and the Cohen-Macaulay approximation theorem due to Auslander and Buchweitz. In this paper we generalize these results to much more general case over non-commutative rings. As an application, we establish a relation between the injective dimension of a generalized tilting module ω and the finitistic dimension with respect to ω.