Timber Defect Identification: Enhanced Classification with Residual Networks
Teo Hong Chun,
Ummi Raba’ah Hashim,
Sabrina Ahmad
Abstract:This study investigates the potential enhancement of classification accuracy in timber defect identification through the utilization of deep learning, specifically residual networks. By exploring the refinement of these networks via increased depth and multi-level feature incorporation, the goal is to develop a framework capable of distinguishing various defect classes. A sequence of ablation experiments was conducted, comparing our proposed framework's performance (R1, R2 and R3) with the original ResNet50 ar… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.