Nowadays, the power consumption and dependable repeated data collection are causing the main issue for fault or collision in controller area network (CAN), which has a great impact for designing autonomous vehicle in smart cities. Whenever a smart vehicle is designed with several sensor nodes, Internet of Things (IoT) modules are linked through CAN for reliable transmission of a message for avoiding collision, but it is failed in communication due to delay and collision in communication of message frame from a source node to the destination. Generally, the emerging role of IoT and vehicles has undoubtedly brought a new path for tomorrow’s cities. The method proposed in this paper is used to gain fault-tolerant capability through Probabilistic Automatic Repeat Request (PARQ) and also Probabilistic Automatic Repeat Request (PARQ) with Fault Impact (PARQ-FI), in addition to providing optimal power allocation in CAN sensor nodes for enhancing the performance of the process and also significantly acting a role for making future smart cities. Several message frames are needed to be retransmitted on PARQ and fault impact (PARQ-FI) calculates the message with a response probability of each node.