Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
The purpose of this paper is to show, on the basis of Newtonian mechanics (in Euclidean space), that the core disks of spiral galaxies (the central disks in galactic cores that are perpendicular to the axes of rotation) rotate in the same fashion as a phonograph turntable, if the mass densities in the cores of such galaxies remain uniform. On the basis of the hypothesis of uniform mass density in the core, it is then shown that the density of mass in the shell (the entire domain outside of the core) must remain inversely proportional to the square of radial distance from the axis of rotation and that the angular velocity in the shell annulus (annulus in the shell that contains the spiral forms) is inversely proportional to radial distance, or that the circumferential velocity on the shell disk is independent of radial distance from the core axis. The equation of motion for the shell disk is then obtained and it is concluded that the spiral shaped lanes are not trajectories. But it is shown that any bar-shaped feature crossing the shell annulus and core disk, collinear with the core centre, will become distorted, due to the above angular velocity distribution in the shell disk, assuming the form of two, symmetrically disposed, Archimedean spirals, while the portion of the bar inside the core remains undistorted and merely rotates.
The purpose of this paper is to show, on the basis of Newtonian mechanics (in Euclidean space), that the core disks of spiral galaxies (the central disks in galactic cores that are perpendicular to the axes of rotation) rotate in the same fashion as a phonograph turntable, if the mass densities in the cores of such galaxies remain uniform. On the basis of the hypothesis of uniform mass density in the core, it is then shown that the density of mass in the shell (the entire domain outside of the core) must remain inversely proportional to the square of radial distance from the axis of rotation and that the angular velocity in the shell annulus (annulus in the shell that contains the spiral forms) is inversely proportional to radial distance, or that the circumferential velocity on the shell disk is independent of radial distance from the core axis. The equation of motion for the shell disk is then obtained and it is concluded that the spiral shaped lanes are not trajectories. But it is shown that any bar-shaped feature crossing the shell annulus and core disk, collinear with the core centre, will become distorted, due to the above angular velocity distribution in the shell disk, assuming the form of two, symmetrically disposed, Archimedean spirals, while the portion of the bar inside the core remains undistorted and merely rotates.
An asymptotic method has been developed for investigation of kinetics of formation of compact objects with strong internal bonds. The method is based on the uncertainty relation for a coordinate and a momentum in space of sizes of objects (clusters) with strongly pronounced collective quantum properties resulted from exchange interactions of various physical nature determined by spatial scales of the processes under consideration. The proposed phenomenological approach has been developed by analogy with the all-known ideas about coherent states of quantum mechanical oscillator systems for which a product of coordinate and momentum uncertainties (dispersions) accepts the value, which is minimally possible within uncertainty relations. With such an approach the leading processes are oscillations of components that make up objects, mainly: collective nucleon oscillations in a nucleus and phonon excitations in a mesostructure crystal lattice. This allows us to consider formation and growth of subatomic and mesoscopic objects in the context of a single formalism. The proposed models adequately describe characteristics of formation processes of nuclear matter clusters as well as mesoscopic crystals having covalent and quasi-covalent bonds between atoms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.