Aiming at the problem that the existing spatial keyword group query problem did not consider the query requirements with exclusion keywords and time attributes, a time-aware group query problem with exclusion keywords (TEGSKQ) is proposed for the first time. To solve this problem effectively, this paper proposes a query method based on the EKTIR-Tree index and dominating group (EKTDG). This method first proposes the EKTIR-tree index, which incorporates Huffman coding and integrates Bloom filters to deal with excluded keywords in order to improve the hit rate of keyword queries, significantly improving the query efficiency and reducing the storage occupancy. Then, the Candidate algorithm is proposed based on the EKTIR-tree index to filter out the spatial–textual objects that meet the query’s keywords and time requirements, narrowing the search space for subsequent queries on a large scale. To address the problem of the low efficiency of existing algorithms based on a spatial distance query, a distance-dominating group is defined and a pruning algorithm based on a spatial distance-dominating group is proposed, which is a refining process of query results and greatly improves the search efficiency of the query. Theoretical and experimental studies show that the proposed method can better handle group queries with exclusion keywords based on time awareness.