Objective-The role of fluid shear stress (FSS) in collateral vessel growth remains disputed and prospective in vivo experiments to test its morphogenic power are rare. Therefore, we studied the influence of FSS on arteriogenesis in a new model with extremely high levels of collateral flow and FSS in pig and rabbit hind limbs. Methods and Results-A side-to-side anastomosis was created between the distal stump of one of the bilaterally occluded femoral arteries with the accompanying vein. This clamps the collateral reentry pressure at venous levels and increases collateral flow, which is directed to a large part into the venous system. This decreases circumferential wall stress and markedly increases FSS. One week after anastomosis, angiographic number and size of collaterals were significantly increased. Maximal collateral flow exceeded by 2.3-fold that obtained in the ligature-only hind limb. Capillary density increased in lower leg muscles. Immunohistochemistry revealed augmented proliferative activity of endothelial and smooth muscle cells. Intercellular adhesion molecule-1 and vascular cell adhesion molecule (VCAM)-1 were upregulated, and monocyte invasion was markedly increased. In 2-dimensional gels, actin-regulating cofilin1 and cofilin2, destrin, and transgelin2 showed the highest degree of differential regulation. Conclusions-High levels of FSS cause a strong arteriogenic response, reinstate cellular proliferation, stimulate cytoskeletal rearrangement, and normalize maximal conductance. FSS is the initiating molding force in arteriogenesis. Key Words: fluid shear stress Ⅲ shunt Ⅲ arteriogenesis Ⅲ proteomics Ⅲ cytoskeletal proteins N umerous studies have documented the influence of fluid shear stress (FSS) as an arterial molding force, 1-3 but information on the actions of markedly increased in vivo FSS on the development of arterial collateral vessels after occlusion of a conduit artery is lacking. Such studies are needed because attempts at changing FSS often also alter the circumferential wall stress, another acknowledged molding force of growing collateral vessels. The formation of a collateral circulation after an arterial occlusion correlates well with the calculated increase in FSS because of the increased collateral flow caused by the pressure decrease along pre-existent collaterals. However, because of the fast increase in collateral diameter by cellular proliferation, FSS decreases quickly again, and the early termination of the growth process at an incomplete stage of adaptation is believed to be caused by the only transient action of FSS. One of the hypotheses to be tested was, therefore, whether prolonged action of FSS would also improve the final adaptation by continued growth. The present experiments were therefore undertaken to prospectively study the causal relations between arteriogenesis and FSS by a stepwise and lasting increase of collateral flow brought about by the creation of a side-to-side anastomosis between the distal stump of the occluded femoral artery and its accompanying vei...