Gluconate substitution for serosal Cl- reduces the transepithelial short-circuit current (Isc) and depolarizes short-circuited frog skins. These effects could result either from inhibition of basolateral K+ conductance, or from two actions to inhibit both apical Na+ permeability (PapNa) and basolateral pump activity. We have addressed this question by studying whole-and split-thickness frog skins. Intracellular Na+ concentration (CcNa) and PapNa have been monitored by measuring the current-voltage relationship for apical Na+ entry. This analysis was conducted by applying trains of voltage pulses, with pulse durations of 16 to 32 msec. Estimates of PapNa and CcNa were not detectably dependent on pulse duration over the range 16 to 80 msec. Serosal Cl- replacement uniformly depolarized short-circuited tissues. The depolarization was associated with inhibition of Isc across each split skin, but only occasionally across the whole-thickness preparations. This difference may reflect the better ionic exchange between the bulk medium and the extracellular fluid in contact with the basolateral membranes, following removal of the underlying dermis in the split-skin preparations. PapNa was either unchanged or increased, and CcNa either unchanged or reduced after the anionic replacement. These data are incompatible with the concept that serosal Cl- replacement inhibits PapNa and Na,K-pump activity. Gluconate substitution likely reduces cell volume, triggering inhibition of the basolateral K+ channels, consistent with the data and conclusions of S.A. Lewis, A.G. Butt, M.J. Bowler, J.P. Leader and A.D.C. Macknight (J. Membrane Biol. 83:119-137, 1985) for toad bladder. The resulting depolarization reduces the electrical force favoring apical Na+ entry. The volume-conductance coupling serves to conserve volume by reducing K+ solute loss. Its molecular basis remains to be identified.