Parallel implementation of topological algorithms is highly desirable, but the challenges, from reconstructing algorithms around independent threads through to runtime load balancing, have proven to be formidable. This problem, made all the more acute by the diversity of hardware platforms, has led to new kinds of implementation platform for computational science, with sophisticated runtime systems managing and coordinating large threadcounts to keep processing elements heavily utilized. While simpler and more portable than direct management of threads, these approaches still entangle program logic with resource management. Similar kinds of highly parallel runtime system have also been developed for functional languages. Here, however, language support for higher-order functions allows a cleaner separation between the algorithm and 'skeletons' that express generic patterns of parallel computation. We report results on using this technique to develop a distributed version of the Joint Contour Net, a generalization of the Contour Tree to multifields. We present performance comparisons against a recent Haskell implementation using shared-memory parallelism, and initial work on a skeleton for distributed memory implementation that utilizes an innovative strategy to reduce inter-process communication overheads.